Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Unsupervised Clustering Active Learning for Person Re-identification (2112.13308v1)

Published 26 Dec 2021 in cs.CV and cs.AI

Abstract: Supervised person re-identification (re-id) approaches require a large amount of pairwise manual labeled data, which is not applicable in most real-world scenarios for re-id deployment. On the other hand, unsupervised re-id methods rely on unlabeled data to train models but performs poorly compared with supervised re-id methods. In this work, we aim to combine unsupervised re-id learning with a small number of human annotations to achieve a competitive performance. Towards this goal, we present a Unsupervised Clustering Active Learning (UCAL) re-id deep learning approach. It is capable of incrementally discovering the representative centroid-pairs and requiring human annotate them. These few labeled representative pairwise data can improve the unsupervised representation learning model with other large amounts of unlabeled data. More importantly, because the representative centroid-pairs are selected for annotation, UCAL can work with very low-cost human effort. Extensive experiments demonstrate the superiority of the proposed model over state-of-the-art active learning methods on three re-id benchmark datasets.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)