Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On arbitrarily regular conforming virtual element methods for elliptic partial differential equations (2112.13295v1)

Published 25 Dec 2021 in math.NA and cs.NA

Abstract: The Virtual Element Method (VEM) is a very effective framework to design numerical approximations with high global regularity to the solutions of elliptic partial differential equations. In this paper, we review the construction of such approximations for an elliptic problem of order $p_1$ using conforming, finite dimensional subspaces of $ H{p_2}(\Omega)$, where $p_1$ and $p_2$ are two integer numbers such that $p_2 \geq p_1 \geq 1$ and $\Omega\in R2$ is the computational domain. An abstract convergence result is presented in a suitably defined energy norm. The space formulation and major aspects such as the choice and unisolvence of the degrees of freedom are discussed, also providing specific examples corresponding to various practical cases of high global regularity. Finally, the construction of the "enhanced" formulation of the virtual element spaces is also discussed in details with a proof that the dimension of the "regular" and "enhanced" spaces is the same and that the virtual element functions in both spaces can be described by the same choice of the degrees of freedom.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube