Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Pedagogical Rule Extraction to Learn Interpretable Models - an Empirical Study (2112.13285v2)

Published 25 Dec 2021 in cs.LG

Abstract: Machine-learning models are ubiquitous. In some domains, for instance, in medicine, the models' predictions must be interpretable. Decision trees, classification rules, and subgroup discovery are three broad categories of supervised machine-learning models presenting knowledge in the form of interpretable rules. The accuracy of these models learned from small datasets is usually low. Obtaining larger datasets is often hard to impossible. Pedagogical rule extraction methods could help to learn better rules from small data by augmenting a dataset employing statistical models and using it to learn a rule-based model. However, existing evaluation of these methods is often inconclusive, and they were not compared so far. Our framework PRELIM unifies existing pedagogical rule extraction techniques. In the extensive experiments, we identified promising PRELIM configurations not studied before.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.