Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

TSAX is Trending (2112.12912v1)

Published 24 Dec 2021 in cs.LG

Abstract: Time series mining is an important branch of data mining, as time series data is ubiquitous and has many applications in several domains. The main task in time series mining is classification. Time series representation methods play an important role in time series classification and other time series mining tasks. One of the most popular representation methods of time series data is the Symbolic Aggregate approXimation (SAX). The secret behind its popularity is its simplicity and efficiency. SAX has however one major drawback, which is its inability to represent trend information. Several methods have been proposed to enable SAX to capture trend information, but this comes at the expense of complex processing, preprocessing, or post-processing procedures. In this paper we present a new modification of SAX that we call Trending SAX (TSAX), which only adds minimal complexity to SAX, but substantially improves its performance in time series classification. This is validated experimentally on 50 datasets. The results show the superior performance of our method, as it gives a smaller classification error on 39 datasets compared with SAX.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.