Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Efficient decision tree training with new data structure for secure multi-party computation (2112.12906v1)

Published 24 Dec 2021 in cs.CR

Abstract: We propose a secure multi-party computation (MPC) protocol that constructs a secret-shared decision tree for a given secret-shared dataset. The previous MPC-based decision tree training protocol (Abspoel et al. 2021) requires $O(2hmn\log n)$ comparisons, being exponential in the tree height $h$ and with $n$ and $m$ being the number of rows and that of attributes in the dataset, respectively. The cause of the exponential number of comparisons in $h$ is that the decision tree training algorithm is based on the divide-and-conquer paradigm, where dummy rows are added after each split in order to hide the number of rows in the dataset. We resolve this issue via secure data structure that enables us to compute an aggregate value for every group while hiding the grouping information. By using this data structure, we can train a decision tree without adding dummy rows while hiding the size of the intermediate data. We specifically describes a decision tree training protocol that requires only $O(hmn\log n)$ comparisons when the input attributes are continuous and the output attribute is binary. Note that the order is now \emph{linear} in the tree height $h$. To demonstrate the practicality of our protocol, we implement it in an MPC framework based on a three-party secret sharing scheme. Our implementation results show that our protocol trains a decision tree with a height of 5 in 33 seconds for a dataset of 100,000 rows and 10 attributes.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.