Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

MISO hierarchical inference engine satisfying the law of importation with aggregation functions (2112.12808v4)

Published 19 Dec 2021 in cs.AI and math.LO

Abstract: Fuzzy inference engine, as one of the most important components of fuzzy systems, can obtain some meaningful outputs from fuzzy sets on input space and fuzzy rule base using fuzzy logic inference methods. In order to enhance the computational efficiency of fuzzy inference engine in multi-input-single-output(MISO) fuzzy systems,this paper aims mainly to investigate three MISO fuzzy hierarchial inference engines based on fuzzy implications satisfying the law of importation with aggregation functions (LIA). We firstly find some aggregation functions for well-known fuzzy implications such that they satisfy (LIA). For a given aggregation function, the fuzzy implication which satisfies (LIA) with this aggregation function is then characterized. Finally, we construct three fuzzy hierarchical inference engines in MISO fuzzy systems applying aforementioned theoretical developments.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.