Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Understanding and Measuring Robustness of Multimodal Learning (2112.12792v2)

Published 22 Dec 2021 in cs.LG and cs.MM

Abstract: The modern digital world is increasingly becoming multimodal. Although multimodal learning has recently revolutionized the state-of-the-art performance in multimodal tasks, relatively little is known about the robustness of multimodal learning in an adversarial setting. In this paper, we introduce a comprehensive measurement of the adversarial robustness of multimodal learning by focusing on the fusion of input modalities in multimodal models, via a framework called MUROAN (MUltimodal RObustness ANalyzer). We first present a unified view of multimodal models in MUROAN and identify the fusion mechanism of multimodal models as a key vulnerability. We then introduce a new type of multimodal adversarial attacks called decoupling attack in MUROAN that aims to compromise multimodal models by decoupling their fused modalities. We leverage the decoupling attack of MUROAN to measure several state-of-the-art multimodal models and find that the multimodal fusion mechanism in all these models is vulnerable to decoupling attacks. We especially demonstrate that, in the worst case, the decoupling attack of MUROAN achieves an attack success rate of 100% by decoupling just 1.16% of the input space. Finally, we show that traditional adversarial training is insufficient to improve the robustness of multimodal models with respect to decoupling attacks. We hope our findings encourage researchers to pursue improving the robustness of multimodal learning.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.