Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Quadratic speedup for spatial search by continuous-time quantum walk (2112.12746v1)

Published 23 Dec 2021 in quant-ph and cs.DS

Abstract: Continuous-time quantum walks provide a natural framework to tackle the fundamental problem of finding a node among a set of marked nodes in a graph, known as spatial search. Whether spatial search by continuous-time quantum walk provides a quadratic advantage over classical random walks has been an outstanding problem. Thus far, this advantage is obtained only for specific graphs or when a single node of the underlying graph is marked. In this article, we provide a new continuous-time quantum walk search algorithm that completely resolves this: our algorithm can find a marked node in any graph with any number of marked nodes, in a time that is quadratically faster than classical random walks. The overall algorithm is quite simple, requiring time evolution of the quantum walk Hamiltonian followed by a projective measurement. A key component of our algorithm is a purely analog procedure to perform operations on a state of the form $e{-tH2}|\psi\rangle$, for a given Hamiltonian $H$: it only requires evolving $H$ for time scaling as $\sqrt{t}$. This allows us to quadratically fast-forward the dynamics of a continuous-time classical random walk. The applications of our work thus go beyond the realm of quantum walks and can lead to new analog quantum algorithms for preparing ground states of Hamiltonians or solving optimization problems.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.