Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hermite--Padé approximations with Pfaffian structures: Novikov peakon equation and integrable lattices (2112.12601v2)

Published 23 Dec 2021 in nlin.SI, cs.NA, math.CA, and math.NA

Abstract: Motivated by the Novikov equation and its peakon problem, we propose a new mixed type Hermite--Pad\'{e} approximation whose unique solution is a sequence of polynomials constructed with the help of Pfaffians. These polynomials belong to the family of recently proposed partial-skew-orthogonal polynomials. The relevance of partial-skew-orthogonal polynomials is especially visible in the approximation problem germane to the Novikov peakon problem so that we obtain explicit inverse formulae in terms of Pfaffians by reformulating the inverse spectral problem for the Novikov multipeakons. Furthermore, we investigate two Hermite--Pad\'{e} approximations for the related spectral problem of the discrete dual cubic string, and show that these approximation problems can also be solved in terms of partial-skew-orthogonal polynomials and nonsymmetric Cauchy biorthogonal polynomials. This formulation results in a new correspondence among several integrable lattices.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)