Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hermite--Padé approximations with Pfaffian structures: Novikov peakon equation and integrable lattices (2112.12601v2)

Published 23 Dec 2021 in nlin.SI, cs.NA, math.CA, and math.NA

Abstract: Motivated by the Novikov equation and its peakon problem, we propose a new mixed type Hermite--Pad\'{e} approximation whose unique solution is a sequence of polynomials constructed with the help of Pfaffians. These polynomials belong to the family of recently proposed partial-skew-orthogonal polynomials. The relevance of partial-skew-orthogonal polynomials is especially visible in the approximation problem germane to the Novikov peakon problem so that we obtain explicit inverse formulae in terms of Pfaffians by reformulating the inverse spectral problem for the Novikov multipeakons. Furthermore, we investigate two Hermite--Pad\'{e} approximations for the related spectral problem of the discrete dual cubic string, and show that these approximation problems can also be solved in terms of partial-skew-orthogonal polynomials and nonsymmetric Cauchy biorthogonal polynomials. This formulation results in a new correspondence among several integrable lattices.

Citations (5)

Summary

We haven't generated a summary for this paper yet.