Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 187 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Hermite--Padé approximations with Pfaffian structures: Novikov peakon equation and integrable lattices (2112.12601v2)

Published 23 Dec 2021 in nlin.SI, cs.NA, math.CA, and math.NA

Abstract: Motivated by the Novikov equation and its peakon problem, we propose a new mixed type Hermite--Pad\'{e} approximation whose unique solution is a sequence of polynomials constructed with the help of Pfaffians. These polynomials belong to the family of recently proposed partial-skew-orthogonal polynomials. The relevance of partial-skew-orthogonal polynomials is especially visible in the approximation problem germane to the Novikov peakon problem so that we obtain explicit inverse formulae in terms of Pfaffians by reformulating the inverse spectral problem for the Novikov multipeakons. Furthermore, we investigate two Hermite--Pad\'{e} approximations for the related spectral problem of the discrete dual cubic string, and show that these approximation problems can also be solved in terms of partial-skew-orthogonal polynomials and nonsymmetric Cauchy biorthogonal polynomials. This formulation results in a new correspondence among several integrable lattices.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.