Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Scalable Variational Quantum Circuits for Autoencoder-based Drug Discovery (2112.12563v1)

Published 15 Nov 2021 in quant-ph, cs.ET, and cs.LG

Abstract: The de novo design of drug molecules is recognized as a time-consuming and costly process, and computational approaches have been applied in each stage of the drug discovery pipeline. Variational autoencoder is one of the computer-aided design methods which explores the chemical space based on existing molecular dataset. Quantum machine learning has emerged as an atypical learning method that may speed up some classical learning tasks because of its strong expressive power. However, near-term quantum computers suffer from limited number of qubits which hinders the representation learning in high dimensional spaces. We present a scalable quantum generative autoencoder (SQ-VAE) for simultaneously reconstructing and sampling drug molecules, and a corresponding vanilla variant (SQ-AE) for better reconstruction. The architectural strategies in hybrid quantum classical networks such as, adjustable quantum layer depth, heterogeneous learning rates, and patched quantum circuits are proposed to learn high dimensional dataset such as, ligand-targeted drugs. Extensive experimental results are reported for different dimensions including 8x8 and 32x32 after choosing suitable architectural strategies. The performance of quantum generative autoencoder is compared with the corresponding classical counterpart throughout all experiments. The results show that quantum computing advantages can be achieved for normalized low-dimension molecules, and that high-dimension molecules generated from quantum generative autoencoders have better drug properties within the same learning period.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)