Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning Implicit Body Representations from Double Diffusion Based Neural Radiance Fields (2112.12390v2)

Published 23 Dec 2021 in cs.CV

Abstract: In this paper, we present a novel double diffusion based neural radiance field, dubbed DD-NeRF, to reconstruct human body geometry and render the human body appearance in novel views from a sparse set of images. We first propose a double diffusion mechanism to achieve expressive representations of input images by fully exploiting human body priors and image appearance details at two levels. At the coarse level, we first model the coarse human body poses and shapes via an unclothed 3D deformable vertex model as guidance. At the fine level, we present a multi-view sampling network to capture subtle geometric deformations and image detailed appearances, such as clothing and hair, from multiple input views. Considering the sparsity of the two level features, we diffuse them into feature volumes in the canonical space to construct neural radiance fields. Then, we present a signed distance function (SDF) regression network to construct body surfaces from the diffused features. Thanks to our double diffused representations, our method can even synthesize novel views of unseen subjects. Experiments on various datasets demonstrate that our approach outperforms the state-of-the-art in both geometric reconstruction and novel view synthesis.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.