Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Random Point Initialization Approach to Image Segmentation with Variational Level-sets (2112.12355v1)

Published 23 Dec 2021 in cs.CV

Abstract: Image segmentation is an essential component in many image processing and computer vision tasks. The primary goal of image segmentation is to simplify an image for easier analysis, and there are two broad approaches for achieving this: edge based methods, which extract the boundaries of specific known objects, and region based methods, which partition the image into regions that are statistically homogeneous. One of the more prominent edge finding methods, known as the level set method, evolves a zero-level contour in the image plane with gradient descent until the contour has converged to the object boundaries. While the classical level set method and its variants have proved successful in segmenting real images, they are susceptible to becoming stuck in noisy regions of the image plane without a priori knowledge of the image and they are unable to provide details beyond object outer boundary locations. We propose a modification to the variational level set image segmentation method that can quickly detect object boundaries by making use of random point initialization. We demonstrate the efficacy of our approach by comparing the performance of our method on real images to that of the prominent Canny Method.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.