Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Robust Initialization of Residual Blocks for Effective ResNet Training without Batch Normalization (2112.12299v2)

Published 23 Dec 2021 in cs.LG

Abstract: Batch Normalization is an essential component of all state-of-the-art neural networks architectures. However, since it introduces many practical issues, much recent research has been devoted to designing normalization-free architectures. In this paper, we show that weights initialization is key to train ResNet-like normalization-free networks. In particular, we propose a slight modification to the summation operation of a block output to the skip-connection branch, so that the whole network is correctly initialized. We show that this modified architecture achieves competitive results on CIFAR-10, CIFAR-100 and ImageNet without further regularization nor algorithmic modifications.

Citations (1)

Summary

We haven't generated a summary for this paper yet.