Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Machine learning nonequilibrium electron forces for adiabatic spin dynamics (2112.12124v1)

Published 22 Dec 2021 in cond-mat.mes-hall, cond-mat.str-el, and cs.LG

Abstract: We present a generalized potential theory of nonequilibrium torques for the Landau-Lifshitz equation. The general formulation of exchange forces in terms of two potential energies allows for the implementation of accurate machine learning models for adiabatic spin dynamics of out-of-equilibrium itinerant magnetic systems. To demonstrate our approach, we develop a deep-learning neural network that successfully learns the forces in a driven s-d model computed from the nonequilibrium Green's function method. We show that the Landau-Lifshitz dynamics simulations with forces predicted from the neural-net model accurately reproduce the voltage-driven domain-wall propagation. Our work opens a new avenue for multi-scale modeling of nonequilibrium dynamical phenomena in itinerant magnets and spintronics based on machine-learning models.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.