Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical Cross-Modality Semantic Correlation Learning Model for Multimodal Summarization (2112.12072v1)

Published 16 Dec 2021 in cs.CV, cs.AI, and cs.CL

Abstract: Multimodal summarization with multimodal output (MSMO) generates a summary with both textual and visual content. Multimodal news report contains heterogeneous contents, which makes MSMO nontrivial. Moreover, it is observed that different modalities of data in the news report correlate hierarchically. Traditional MSMO methods indistinguishably handle different modalities of data by learning a representation for the whole data, which is not directly adaptable to the heterogeneous contents and hierarchical correlation. In this paper, we propose a hierarchical cross-modality semantic correlation learning model (HCSCL) to learn the intra- and inter-modal correlation existing in the multimodal data. HCSCL adopts a graph network to encode the intra-modal correlation. Then, a hierarchical fusion framework is proposed to learn the hierarchical correlation between text and images. Furthermore, we construct a new dataset with relevant image annotation and image object label information to provide the supervision information for the learning procedure. Extensive experiments on the dataset show that HCSCL significantly outperforms the baseline methods in automatic summarization metrics and fine-grained diversity tests.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Litian Zhang (16 papers)
  2. Xiaoming Zhang (113 papers)
  3. Junshu Pan (4 papers)
  4. Feiran Huang (32 papers)
Citations (44)

Summary

We haven't generated a summary for this paper yet.