Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 54 tok/s
Gemini 2.5 Flash 140 tok/s Pro
Kimi K2 208 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On a linear Gromov-Wasserstein distance (2112.11964v4)

Published 22 Dec 2021 in math.NA, cs.NA, and math.OC

Abstract: Gromov-Wasserstein distances are generalization of Wasserstein distances, which are invariant under distance preserving transformations. Although a simplified version of optimal transport in Wasserstein spaces, called linear optimal transport (LOT), was successfully used in practice, there does not exist a notion of linear Gromov-Wasserstein distances so far. In this paper, we propose a definition of linear Gromov-Wasserstein distances. We motivate our approach by a generalized LOT model, which is based on barycentric projection maps of transport plans. Numerical examples illustrate that the linear Gromov-Wasserstein distances, similarly as LOT, can replace the expensive computation of pairwise Gromov-Wasserstein distances in applications like shape classification.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.