Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Bottom-up approaches for multi-person pose estimation and it's applications: A brief review (2112.11834v1)

Published 22 Dec 2021 in cs.CV and cs.AI

Abstract: Human Pose Estimation (HPE) is one of the fundamental problems in computer vision. It has applications ranging from virtual reality, human behavior analysis, video surveillance, anomaly detection, self-driving to medical assistance. The main objective of HPE is to obtain the person's posture from the given input. Among different paradigms for HPE, one paradigm is called bottom-up multi-person pose estimation. In the bottom-up approach, initially, all the key points of the targets are detected, and later in the optimization stage, the detected key points are associated with the corresponding targets. This review paper discussed the recent advancements in bottom-up approaches for the HPE and listed the possible high-quality datasets used to train the models. Additionally, a discussion of the prominent bottom-up approaches and their quantitative results on the standard performance matrices are given. Finally, the limitations of the existing methods are highlighted, and guidelines of the future research directions are given.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube