Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

An Efficient Pruning Process with Locality Aware Exploration and Dynamic Graph Editing for Subgraph Matching (2112.11736v1)

Published 22 Dec 2021 in cs.IR

Abstract: Subgraph matching is a NP-complete problem that extracts isomorphic embeddings of a query graph $q$ in a data graph $G$. In this paper, we present a framework with three components: Preprocessing, Reordering and Enumeration. While pruning is the core technique for almost all existing subgraph matching solvers, it mainly eliminates unnecessary enumeration over data graph without alternation of query graph. By formulating a problem: Assignment under Conditional Candidate Set(ACCS), which is proven to be equivalent to Subgraph matching problem, we propose Dynamic Graph Editing(DGE) that is for the first time designed to tailor the query graph to achieve pruning effect and performance acceleration. As a result, we proposed DGEE(Dynamic Graph Editing Enumeration), a novel enumeration algorithm combines Dynamic Graph Editing and Failing Set optimization. Our second contribution is proposing fGQL , an optimized version of GQL algorithm, that is utilized during the Preprocessing phase. Extensive experimental results show that the DGEE-based framework can outperform state-of-the-art subgraph matching algorithms.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.