Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Exploring Credibility Scoring Metrics of Perception Systems for Autonomous Driving (2112.11643v1)

Published 22 Dec 2021 in cs.CV and cs.LG

Abstract: Autonomous and semi-autonomous vehicles' perception algorithms can encounter situations with erroneous object detection, such as misclassification of objects on the road, which can lead to safety violations and potentially fatal consequences. While there has been substantial work in the robustness of object detection algorithms and online metric learning, there is little research on benchmarking scoring metrics to determine any possible indicators of potential misclassification. An emphasis is put on exploring the potential of taking these scoring metrics online in order to allow the AV to make perception-based decisions given real-time constraints. In this work, we explore which, if any, metrics act as online indicators of when perception algorithms and object detectors are failing. Our work provides insight on better design principles and characteristics of online metrics to accurately evaluate the credibility of object detectors. Our approach employs non-adversarial and realistic perturbations to images, on which we evaluate various quantitative metrics. We found that offline metrics can be designed to account for real-world corruptions such as poor weather conditions and that the analysis of such metrics can provide a segue into designing online metrics. This is a clear next step as it can allow for error-free autonomous vehicle perception and safer time-critical and safety-critical decision-making.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.