Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Causal Inference Despite Limited Global Confounding via Mixture Models (2112.11602v5)

Published 22 Dec 2021 in cs.LG, cs.DS, eess.SP, and stat.ML

Abstract: A Bayesian Network is a directed acyclic graph (DAG) on a set of $n$ random variables (the vertices); a Bayesian Network Distribution (BND) is a probability distribution on the random variables that is Markovian on the graph. A finite $k$-mixture of such models is graphically represented by a larger graph which has an additional hidden'' (orlatent'') random variable $U$, ranging in ${1,\ldots,k}$, and a directed edge from $U$ to every other vertex. Models of this type are fundamental to causal inference, where $U$ models an unobserved confounding effect of multiple populations, obscuring the causal relationships in the observable DAG. By solving the mixture problem and recovering the joint probability distribution with $U$, traditionally unidentifiable causal relationships become identifiable. Using a reduction to the more well-studied ``product'' case on empty graphs, we give the first algorithm to learn mixtures of non-empty DAGs.

Citations (6)

Summary

We haven't generated a summary for this paper yet.