Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Neural Echo State Network using oscillations of gas bubbles in water (2112.11592v2)

Published 22 Dec 2021 in physics.flu-dyn, cs.ET, cs.LG, cs.NE, math.DS, and nlin.CD

Abstract: In the framework of physical reservoir computing (RC), machine learning algorithms designed for digital computers are executed using analog computer-like nonlinear physical systems that can provide energy-efficient computational power for predicting time-dependent quantities that can be found using nonlinear differential equations. We suggest a bubble-based RC (BRC) system that combines the nonlinearity of an acoustic response of a cluster of oscillating gas bubbles in water with a standard Echo State Network (ESN) algorithm that is well-suited to forecast chaotic time series. We confirm the plausibility of the BRC system by numerically demonstrating its ability to forecast certain chaotic time series similarly to or even more accurately than ESN.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.