Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Automated Drug-Related Information Extraction from French Clinical Documents: ReLyfe Approach (2112.11439v1)

Published 29 Nov 2021 in cs.CL, cs.AI, cs.IR, and cs.LG

Abstract: Structuring medical data in France remains a challenge mainly because of the lack of medical data due to privacy concerns and the lack of methods and approaches on processing the French language. One of these challenges is structuring drug-related information in French clinical documents. To our knowledge, over the last decade, there are less than five relevant papers that study French prescriptions. This paper proposes a new approach for extracting drug-related information from French clinical scanned documents while preserving patients' privacy. In addition, we deployed our method in a health data management platform where it is used to structure drug medical data and help patients organize their drug schedules. It can be implemented on any web or mobile platform. This work closes the gap between theoretical and practical work by creating an application adapted to real production problems. It is a combination of a rule-based phase and a Deep Learning approach. Finally, numerical results show the outperformance and relevance of the proposed methodology.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.