Papers
Topics
Authors
Recent
2000 character limit reached

Interpretable Preference-based Reinforcement Learning with Tree-Structured Reward Functions (2112.11230v1)

Published 20 Dec 2021 in cs.LG and cs.AI

Abstract: The potential of reinforcement learning (RL) to deliver aligned and performant agents is partially bottlenecked by the reward engineering problem. One alternative to heuristic trial-and-error is preference-based RL (PbRL), where a reward function is inferred from sparse human feedback. However, prior PbRL methods lack interpretability of the learned reward structure, which hampers the ability to assess robustness and alignment. We propose an online, active preference learning algorithm that constructs reward functions with the intrinsically interpretable, compositional structure of a tree. Using both synthetic and human-provided feedback, we demonstrate sample-efficient learning of tree-structured reward functions in several environments, then harness the enhanced interpretability to explore and debug for alignment.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.