Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Network Anomaly Detection in Cars: A Case for Time-Sensitive Stream Filtering and Policing (2112.11109v3)

Published 21 Dec 2021 in cs.NI

Abstract: Connected vehicles are threatened by cyber-attacks as in-vehicle networks technologically approach (mobile) LANs with several wireless interconnects to the outside world. Malware that infiltrates a car today faces potential victims of constrained, barely shielded Electronic Control Units (ECUs). Many ECUs perform critical driving functions, which stresses the need for hardening security and resilience of in-vehicle networks in a multifaceted way. Future vehicles will comprise Ethernet backbones that differentiate services via Time-Sensitive Networking (TSN). The well-known vehicular control flows will follow predefined schedules and TSN traffic classifications. In this paper, we exploit this traffic classification to build a network anomaly detection system. We show how filters and policies of TSN can identify misbehaving traffic and thereby serve as distributed guards on the data link layer. On this lowest possible layer, our approach derives a highly efficient network protection directly from TSN. We classify link layer anomalies and micro-benchmark the detection accuracy in each class. Based on a topology derived from a real-world car and its traffic definitions we evaluate the detection system in realistic macro-benchmarks based on recorded attack traces. Our results show that the detection accuracy depends on how exact the specifications of in-vehicle communication are configured. Most notably for a fully specified communication matrix, our anomaly detection remains free of false-positive alarms, which is a significant benefit for implementing automated countermeasures in future vehicles.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.