Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Eigenvalue Problem for the Laplacian via Conformal Mapping and the Gohberg--Sigal Theory (2112.11026v2)

Published 21 Dec 2021 in math.NA, cs.NA, math.AP, and math.SP

Abstract: We consider the Dirichlet and Neumann eigenvalues of the Laplacian for a planar, simply connected domain. The eigenvalues admit a characterization in terms of a layer potential of the Helmholtz equation. Using the exterior conformal mapping associated with the given domain, we reformulate the layer potential as an infinite-dimensional matrix. Based on this matrix representation, we develop a finite section approach for approximating the Laplacian eigenvalues and provide a convergence analysis by applying the Gohberg--Sigal theory for operator-valued functions. Moreover, we derive an asymptotic formula for the Laplacian eigenvalues on deformed domains that results from the changes in the conformal mapping coefficients.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.