Papers
Topics
Authors
Recent
2000 character limit reached

The Eigenvalue Problem for the Laplacian via Conformal Mapping and the Gohberg--Sigal Theory (2112.11026v2)

Published 21 Dec 2021 in math.NA, cs.NA, math.AP, and math.SP

Abstract: We consider the Dirichlet and Neumann eigenvalues of the Laplacian for a planar, simply connected domain. The eigenvalues admit a characterization in terms of a layer potential of the Helmholtz equation. Using the exterior conformal mapping associated with the given domain, we reformulate the layer potential as an infinite-dimensional matrix. Based on this matrix representation, we develop a finite section approach for approximating the Laplacian eigenvalues and provide a convergence analysis by applying the Gohberg--Sigal theory for operator-valued functions. Moreover, we derive an asymptotic formula for the Laplacian eigenvalues on deformed domains that results from the changes in the conformal mapping coefficients.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.