Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Augmented Contrastive Self-Supervised Learning for Audio Invariant Representations (2112.10950v1)

Published 21 Dec 2021 in eess.AS, cs.LG, and cs.SD

Abstract: Improving generalization is a major challenge in audio classification due to labeled data scarcity. Self-supervised learning (SSL) methods tackle this by leveraging unlabeled data to learn useful features for downstream classification tasks. In this work, we propose an augmented contrastive SSL framework to learn invariant representations from unlabeled data. Our method applies various perturbations to the unlabeled input data and utilizes contrastive learning to learn representations robust to such perturbations. Experimental results on the Audioset and DESED datasets show that our framework significantly outperforms state-of-the-art SSL and supervised learning methods on sound/event classification tasks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.