Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

SelFSR: Self-Conditioned Face Super-Resolution in the Wild via Flow Field Degradation Network (2112.10683v1)

Published 20 Dec 2021 in cs.CV and eess.IV

Abstract: In spite of the success on benchmark datasets, most advanced face super-resolution models perform poorly in real scenarios since the remarkable domain gap between the real images and the synthesized training pairs. To tackle this problem, we propose a novel domain-adaptive degradation network for face super-resolution in the wild. This degradation network predicts a flow field along with an intermediate low resolution image. Then, the degraded counterpart is generated by warping the intermediate image. With the preference of capturing motion blur, such a model performs better at preserving identity consistency between the original images and the degraded. We further present the self-conditioned block for super-resolution network. This block takes the input image as a condition term to effectively utilize facial structure information, eliminating the reliance on explicit priors, e.g. facial landmarks or boundary. Our model achieves state-of-the-art performance on both CelebA and real-world face dataset. The former demonstrates the powerful generative ability of our proposed architecture while the latter shows great identity consistency and perceptual quality in real-world images.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.