Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Self-attention Presents Low-dimensional Knowledge Graph Embeddings for Link Prediction (2112.10644v3)

Published 20 Dec 2021 in cs.LG and cs.AI

Abstract: A few models have tried to tackle the link prediction problem, also known as knowledge graph completion, by embedding knowledge graphs in comparably lower dimensions. However, the state-of-the-art results are attained at the cost of considerably increasing the dimensionality of embeddings which causes scalability issues in the case of huge knowledge bases. Transformers have been successfully used recently as powerful encoders for knowledge graphs, but available models still have scalability issues. To address this limitation, we introduce a Transformer-based model to gain expressive low-dimensional embeddings. We utilize a large number of self-attention heads as the key to applying query-dependent projections to capture mutual information between entities and relations. Empirical results on WN18RR and FB15k-237 as standard link prediction benchmarks demonstrate that our model has favorably comparable performance with the current state-of-the-art models. Notably, we yield our promising results with a significant reduction of 66.9% in the dimensionality of embeddings compared to the five best recent state-of-the-art competitors on average.

Citations (40)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.