Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Context-Based Music Recommendation Algorithm Evaluation (2112.10612v1)

Published 16 Dec 2021 in cs.IR, cs.LG, and cs.SD

Abstract: Artificial Intelligence (AI ) has been very successful in creating and predicting music playlists for online users based on their data; data received from users experience using the app such as searching the songs they like. There are lots of current technological advancements in AI due to the competition between music platform owners such as Spotify, Pandora, and more. In this paper, 6 machine learning algorithms and their individual accuracy for predicting whether a user will like a song are explored across 3 different platforms including Weka, SKLearn, and Orange. The algorithms explored include Logistic Regression, Naive Bayes, Sequential Minimal Optimization (SMO), Multilayer Perceptron (Neural Network), Nearest Neighbor, and Random Forest. With the analysis of the specific characteristics of each song provided by the Spotify API [1], Random Forest is the most successful algorithm for predicting whether a user will like a song with an accuracy of 84%. This is higher than the accuracy of 82.72% found by Mungekar using the Random Forest technique and slightly different characteristics of a song [2]. The characteristics in Mungekars Random Forest algorithm focus more on the artist and popularity rather than the sonic features of the songs. Removing the popularity aspect and focusing purely on the sonic qualities improve the accuracy of recommendations. Finally, this paper shows how song prediction can be accomplished without any monetary investments, and thus, inspires an idea of what amazing results can be accomplished with full financial research.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube