Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 69 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Evaluation and Comparison of Deep Learning Methods for Pavement Crack Identification with Visual Images (2112.10390v1)

Published 20 Dec 2021 in cs.CV and cs.AI

Abstract: Compared with contact detection techniques, pavement crack identification with visual images via deep learning algorithms has the advantages of not being limited by the material of object to be detected, fast speed and low cost. The fundamental frameworks and typical model architectures of transfer learning (TL), encoder-decoder (ED), generative adversarial networks (GAN), and their common modules were first reviewed, and then the evolution of convolutional neural network (CNN) backbone models and GAN models were summarized. The crack classification, segmentation performance, and effect were tested on the SDNET2018 and CFD public data sets. In the aspect of patch sample classification, the fine-tuned TL models can be equivalent to or even slightly better than the ED models in accuracy, and the predicting time is faster; In the aspect of accurate crack location, both ED and GAN algorithms can achieve pixel-level segmentation and is expected to be detected in real time on low computing power platform. Furthermore, a weakly supervised learning framework of combined TL-SSGAN and its performance enhancement measures are proposed, which can maintain comparable crack identification performance with that of the supervised learning, while greatly reducing the number of labeled samples required.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube