Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Tractable Fragments of the Maximum Nash Welfare Problem (2112.10199v2)

Published 19 Dec 2021 in cs.GT

Abstract: We study the problem of maximizing Nash welfare (MNW) while allocating indivisible goods to asymmetric agents. The Nash welfare of an allocation is the weighted geometric mean of agents' utilities, and the allocation with maximum Nash welfare is known to satisfy several desirable fairness and efficiency properties. However, computing such an MNW allocation is NP-hard, even for two agents with identical, additive valuations. Hence, we aim to identify tractable classes that either admit a PTAS, an FPTAS, or an exact polynomial-time algorithm. To this end, we design a PTAS for finding an MNW allocation for the case of asymmetric agents with identical, additive valuations, thus generalizing a similar result for symmetric agents. Our techniques can also be adapted to give a PTAS for the problem of computing the optimal $p$-mean welfare. We also show that an MNW allocation can be computed exactly in polynomial time for identical agents with $k$-ary valuations when $k$ is a constant, where every agent has at most $k$ different values for the goods. Next, we consider the special case where every agent finds at most two goods valuable, and show that this class admits an efficient algorithm, even for general monotone valuations. In contrast, we note that when agents can value three or more goods, maximizing Nash welfare is NP-hard, even when agents are symmetric and have additive valuations, showing our algorithmic result is essentially tight. Finally, we show that for constantly many asymmetric agents with additive valuations, the MNW problem admits an FPTAS.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.