Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Parameterized Approximation Algorithms for $k$-Center Clustering and Variants (2112.10195v1)

Published 19 Dec 2021 in cs.DS

Abstract: $k$-center is one of the most popular clustering models. While it admits a simple 2-approximation in polynomial time in general metrics, the Euclidean version is NP-hard to approximate within a factor of 1.93, even in the plane, if one insists the dependence on $k$ in the running time be polynomial. Without this restriction, a classic algorithm yields a $2{O((k\log k)/{\epsilon})}dn$-time $(1+\epsilon)$-approximation for Euclidean $k$-center, where $d$ is the dimension. We give a faster algorithm for small dimensions: roughly speaking an $O*(2{O((1/\epsilon){O(d)} \cdot k{1-1/d} \cdot \log k)})$-time $(1+\epsilon)$-approximation. In particular, the running time is roughly $O*(2{O((1/\epsilon){O(1)}\sqrt{k}\log k)})$ in the plane. We complement our algorithmic result with a matching hardness lower bound. We also consider a well-studied generalization of $k$-center, called Non-uniform $k$-center (NUkC), where we allow different radii clusters. NUkC is NP-hard to approximate within any factor, even in the Euclidean case. We design a $2{O(k\log k)}n2$ time $3$-approximation for NUkC in general metrics, and a $2{O((k\log k)/\epsilon)}dn$ time $(1+\epsilon)$-approximation for Euclidean NUkC. The latter time bound matches the bound for $k$-center.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.