Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Camera-aware Style Separation and Contrastive Learning for Unsupervised Person Re-identification (2112.10089v1)

Published 19 Dec 2021 in cs.CV

Abstract: Unsupervised person re-identification (ReID) is a challenging task without data annotation to guide discriminative learning. Existing methods attempt to solve this problem by clustering extracted embeddings to generate pseudo labels. However, most methods ignore the intra-class gap caused by camera style variance, and some methods are relatively complex and indirect although they try to solve the negative impact of the camera style on feature distribution. To solve this problem, we propose a camera-aware style separation and contrastive learning method (CA-UReID), which directly separates camera styles in the feature space with the designed camera-aware attention module. It can explicitly divide the learnable feature into camera-specific and camera-agnostic parts, reducing the influence of different cameras. Moreover, to further narrow the gap across cameras, we design a camera-aware contrastive center loss to learn more discriminative embedding for each identity. Extensive experiments demonstrate the superiority of our method over the state-of-the-art methods on the unsupervised person ReID task.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.