Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pure Differential Privacy from Secure Intermediaries (2112.10032v2)

Published 19 Dec 2021 in cs.CR and cs.DS

Abstract: Recent work in differential privacy has explored the prospect of combining local randomization with a secure intermediary. Specifically, there are a variety of protocols in the secure shuffle model (where an intermediary randomly permutes messages) as well as the secure aggregation model (where an intermediary adds messages). Most of these protocols are limited to approximate differential privacy. An exception is the shuffle protocol by Ghazi, Golowich, Kumar, Manurangsi, Pagh, and Velingker (arXiv:2002.01919): it computes bounded sums under pure differential privacy. Its additive error is $\tilde{O}(1/\varepsilon{3/2})$, where $\varepsilon$ is the privacy parameter. In this work, we give a new protocol that ensures $O(1/\varepsilon)$ error under pure differential privacy. We also show how to use it to test uniformity of distributions over $[d]$. The tester's sample complexity has an optimal dependence on $d$. Our work relies on a novel class of secure intermediaries which are of independent interest.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Albert Cheu (18 papers)
  2. Chao Yan (65 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.