Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Beyond Single-Deletion Correcting Codes: Substitutions and Transpositions (2112.09971v1)

Published 18 Dec 2021 in cs.IT, cs.DS, math.CO, and math.IT

Abstract: We consider the problem of designing low-redundancy codes in settings where one must correct deletions in conjunction with substitutions or adjacent transpositions; a combination of errors that is usually observed in DNA-based data storage. One of the most basic versions of this problem was settled more than 50 years ago by Levenshtein, or one substitution, with nearly optimal redundancy. However, this approach fails to extend to many simple and natural variations of the binary single-edit error setting. In this work, we make progress on the code design problem above in three such variations: We construct linear-time encodable and decodable length-$n$ non-binary codes correcting a single edit error with nearly optimal redundancy $\log n+O(\log\log n)$, providing an alternative simpler proof of a result by Cai, Chee, Gabrys, Kiah, and Nguyen (IEEE Trans. Inf. Theory 2021). This is achieved by employing what we call weighted VT sketches, a notion that may be of independent interest. We construct linear-time encodable and list-decodable binary codes with list-size $2$ for one deletion and one substitution with redundancy $4\log n+O(\log\log n)$. This matches the existential bound up to an $O(\log\log n)$ additive term. We show the existence of a binary code correcting one deletion or one adjacent transposition with nearly optimal redundancy $\log n+O(\log\log n)$.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.