Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Kolmogorov Superposition Theorem can Break the Curse of Dimensionality When Approximating High Dimensional Functions (2112.09963v5)

Published 18 Dec 2021 in math.NA and cs.NA

Abstract: We explain how to use Kolmogorov Superposition Theorem (KST) to break the curse of dimensionality when approximating a dense class of multivariate continuous functions. We first show that there is a class of functions called Kolmogorov-Lipschitz (KL) continuous in $C([0,1]d)$ which can be approximated by a special ReLU neural network of two hidden layers with a dimension independent approximation rate $O(1/n)$ with approximation constant increasing quadratically in $d$. The number of parameters used in such neural network approximation equals to $(6d+2)n$. Next we introduce KB-splines by using linear B-splines to replace the outer function and smooth the KB-splines to have the so-called LKB-splines as the basis for approximation. Our numerical evidence shows that the curse of dimensionality is broken in the following sense: When using the standard discrete least squares (DLS) method to approximate a continuous function, there exists a pivotal set of points in $[0,1]d$ with size at most $O(nd)$ such that the rooted mean squares error (RMSE) from the DLS based on the pivotal set is similar to the RMSE of the DLS based on the original set with size $O(nd)$. The pivotal point set is chosen by using matrix cross approximation technique and the number of LKB-splines used for approximation is the same as the size of the pivotal data set. Therefore, we do not need too many basis functions as well as too many function values to approximate a high dimensional continuous function $f$.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com