Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improved No-Regret Algorithms for Stochastic Shortest Path with Linear MDP (2112.09859v1)

Published 18 Dec 2021 in cs.LG

Abstract: We introduce two new no-regret algorithms for the stochastic shortest path (SSP) problem with a linear MDP that significantly improve over the only existing results of (Vial et al., 2021). Our first algorithm is computationally efficient and achieves a regret bound $\widetilde{O}\left(\sqrt{d3B_{\star}2T_{\star} K}\right)$, where $d$ is the dimension of the feature space, $B_{\star}$ and $T_{\star}$ are upper bounds of the expected costs and hitting time of the optimal policy respectively, and $K$ is the number of episodes. The same algorithm with a slight modification also achieves logarithmic regret of order $O\left(\frac{d3B_{\star}4}{c_{\min}2\text{gap}{\min}}\ln5\frac{dB{\star} K}{c_{\min}} \right)$, where $\text{gap}{\min}$ is the minimum sub-optimality gap and $c{\min}$ is the minimum cost over all state-action pairs. Our result is obtained by developing a simpler and improved analysis for the finite-horizon approximation of (Cohen et al., 2021) with a smaller approximation error, which might be of independent interest. On the other hand, using variance-aware confidence sets in a global optimization problem, our second algorithm is computationally inefficient but achieves the first "horizon-free" regret bound $\widetilde{O}(d{3.5}B_{\star}\sqrt{K})$ with no polynomial dependency on $T_{\star}$ or $1/c_{\min}$, almost matching the $\Omega(dB_{\star}\sqrt{K})$ lower bound from (Min et al., 2021).

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.