Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 46 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 40 tok/s Pro
2000 character limit reached

Discretization and Re-synthesis: an alternative method to solve the Cocktail Party Problem (2112.09382v2)

Published 17 Dec 2021 in cs.SD, cs.LG, and eess.AS

Abstract: Deep learning based models have significantly improved the performance of speech separation with input mixtures like the cocktail party. Prominent methods (e.g., frequency-domain and time-domain speech separation) usually build regression models to predict the ground-truth speech from the mixture, using the masking-based design and the signal-level loss criterion (e.g., MSE or SI-SNR). This study demonstrates, for the first time, that the synthesis-based approach can also perform well on this problem, with great flexibility and strong potential. Specifically, we propose a novel speech separation/enhancement model based on the recognition of discrete symbols, and convert the paradigm of the speech separation/enhancement related tasks from regression to classification. By utilizing the synthesis model with the input of discrete symbols, after the prediction of discrete symbol sequence, each target speech could be re-synthesized. Evaluation results based on the WSJ0-2mix and VCTK-noisy corpora in various settings show that our proposed method can steadily synthesize the separated speech with high speech quality and without any interference, which is difficult to avoid in regression-based methods. In addition, with negligible loss of listening quality, the speaker conversion of enhanced/separated speech could be easily realized through our method.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.