Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Upper Bounds for Adversarial Training (2112.09279v2)

Published 17 Dec 2021 in cs.LG, math.OC, and stat.ML

Abstract: Many state-of-the-art adversarial training methods for deep learning leverage upper bounds of the adversarial loss to provide security guarantees against adversarial attacks. Yet, these methods rely on convex relaxations to propagate lower and upper bounds for intermediate layers, which affect the tightness of the bound at the output layer. We introduce a new approach to adversarial training by minimizing an upper bound of the adversarial loss that is based on a holistic expansion of the network instead of separate bounds for each layer. This bound is facilitated by state-of-the-art tools from Robust Optimization; it has closed-form and can be effectively trained using backpropagation. We derive two new methods with the proposed approach. The first method (Approximated Robust Upper Bound or aRUB) uses the first order approximation of the network as well as basic tools from Linear Robust Optimization to obtain an empirical upper bound of the adversarial loss that can be easily implemented. The second method (Robust Upper Bound or RUB), computes a provable upper bound of the adversarial loss. Across a variety of tabular and vision data sets we demonstrate the effectiveness of our approach -- RUB is substantially more robust than state-of-the-art methods for larger perturbations, while aRUB matches the performance of state-of-the-art methods for small perturbations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Dimitris Bertsimas (96 papers)
  2. Xavier Boix (28 papers)
  3. Kimberly Villalobos Carballo (7 papers)
  4. Dick den Hertog (19 papers)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com