Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Hyperbolic Disentangled Representation for Fine-Grained Aspect Extraction (2112.09215v1)

Published 16 Dec 2021 in cs.CL and cs.AI

Abstract: Automatic identification of salient aspects from user reviews is especially useful for opinion analysis. There has been significant progress in utilizing weakly supervised approaches, which require only a small set of seed words for training aspect classifiers. However, there is always room for improvement. First, no weakly supervised approaches fully utilize latent hierarchies between words. Second, each seed words representation should have different latent semantics and be distinct when it represents a different aspect. In this paper, we propose HDAE, a hyperbolic disentangled aspect extractor in which a hyperbolic aspect classifier captures words latent hierarchies, and aspect-disentangled representation models the distinct latent semantics of each seed word. Compared to previous baselines, HDAE achieves average F1 performance gains of 18.2% and 24.1% on Amazon product review and restaurant review datasets, respectively. In addition, the em-bedding visualization experience demonstrates that HDAE is a more effective approach to leveraging seed words. An ablation study and a case study further attest to the effectiveness of the proposed components

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.