Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An Audio-Visual Dataset and Deep Learning Frameworks for Crowded Scene Classification (2112.09172v1)

Published 16 Dec 2021 in cs.CV, cs.LG, and eess.IV

Abstract: This paper presents a task of audio-visual scene classification (SC) where input videos are classified into one of five real-life crowded scenes: 'Riot', 'Noise-Street', 'Firework-Event', 'Music-Event', and 'Sport-Atmosphere'. To this end, we firstly collect an audio-visual dataset (videos) of these five crowded contexts from Youtube (in-the-wild scenes). Then, a wide range of deep learning frameworks are proposed to deploy either audio or visual input data independently. Finally, results obtained from high-performed deep learning frameworks are fused to achieve the best accuracy score. Our experimental results indicate that audio and visual input factors independently contribute to the SC task's performance. Significantly, an ensemble of deep learning frameworks exploring either audio or visual input data can achieve the best accuracy of 95.7%.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.