Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multitask Network for Respiration Rate Estimation -- A Practical Perspective (2112.09071v3)

Published 13 Dec 2021 in eess.SP and cs.LG

Abstract: The exponential rise in wearable sensors has garnered significant interest in assessing the physiological parameters during day-to-day activities. Respiration rate is one of the vital parameters used in the performance assessment of lifestyle activities. However, obtrusive setup for measurement, motion artifacts, and other noises complicate the process. This paper presents a multitasking architecture based on Deep Learning (DL) for estimating instantaneous and average respiration rate from ECG and accelerometer signals, such that it performs efficiently under daily living activities like cycling, walking, etc. The multitasking network consists of a combination of Encoder-Decoder and Encoder-IncResNet, to fetch the average respiration rate and the respiration signal. The respiration signal can be leveraged to obtain the breathing peaks and instantaneous breathing cycles. Mean absolute error(MAE), Root mean square error (RMSE), inference time, and parameter count analysis has been used to compare the network with the current state of art Machine Learning (ML) model and other DL models developed in previous studies. Other DL configurations based on a variety of inputs are also developed as a part of the work. The proposed model showed better overall accuracy and gave better results than individual modalities during different activities.

Citations (2)

Summary

We haven't generated a summary for this paper yet.