Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Towards Robust Real-time Audio-Visual Speech Enhancement (2112.09060v1)

Published 16 Dec 2021 in cs.SD, cs.CV, cs.LG, and eess.AS

Abstract: The human brain contextually exploits heterogeneous sensory information to efficiently perform cognitive tasks including vision and hearing. For example, during the cocktail party situation, the human auditory cortex contextually integrates audio-visual (AV) cues in order to better perceive speech. Recent studies have shown that AV speech enhancement (SE) models can significantly improve speech quality and intelligibility in very low signal to noise ratio (SNR) environments as compared to audio-only SE models. However, despite significant research in the area of AV SE, development of real-time processing models with low latency remains a formidable technical challenge. In this paper, we present a novel framework for low latency speaker-independent AV SE that can generalise on a range of visual and acoustic noises. In particular, a generative adversarial networks (GAN) is proposed to address the practical issue of visual imperfections in AV SE. In addition, we propose a deep neural network based real-time AV SE model that takes into account the cleaned visual speech output from GAN to deliver more robust SE. The proposed framework is evaluated on synthetic and real noisy AV corpora using objective speech quality and intelligibility metrics and subjective listing tests. Comparative simulation results show that our real time AV SE framework outperforms state-of-the-art SE approaches, including recent DNN based SE models.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.