Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Heterogeneous Graph Learning Model for Cyber-Attack Detection (2112.08986v1)

Published 16 Dec 2021 in cs.CR and cs.LG

Abstract: A cyber-attack is a malicious attempt by experienced hackers to breach the target information system. Usually, the cyber-attacks are characterized as hybrid TTPs (Tactics, Techniques, and Procedures) and long-term adversarial behaviors, making the traditional intrusion detection methods ineffective. Most existing cyber-attack detection systems are implemented based on manually designed rules by referring to domain knowledge (e.g., threat models, threat intelligences). However, this process is lack of intelligence and generalization ability. Aiming at this limitation, this paper proposes an intelligent cyber-attack detection method based on provenance data. To effective and efficient detect cyber-attacks from a huge number of system events in the provenance data, we firstly model the provenance data by a heterogeneous graph to capture the rich context information of each system entities (e.g., process, file, socket, etc.), and learns a semantic vector representation for each system entity. Then, we perform online cyber-attack detection by sampling a small and compact local graph from the heterogeneous graph, and classifying the key system entities as malicious or benign. We conducted a series of experiments on two provenance datasets with real cyber-attacks. The experiment results show that the proposed method outperforms other learning based detection models, and has competitive performance against state-of-the-art rule based cyber-attack detection systems.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.