Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 149 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On the Uncertain Single-View Depths in Colonoscopies (2112.08906v2)

Published 16 Dec 2021 in cs.CV

Abstract: Estimating depth information from endoscopic images is a prerequisite for a wide set of AI-assisted technologies, such as accurate localization and measurement of tumors, or identification of non-inspected areas. As the domain specificity of colonoscopies -- deformable low-texture environments with fluids, poor lighting conditions and abrupt sensor motions -- pose challenges to multi-view 3D reconstructions, single-view depth learning stands out as a promising line of research. Depth learning can be extended in a Bayesian setting, which enables continual learning, improves decision making and can be used to compute confidence intervals or quantify uncertainty for in-body measurements. In this paper, we explore for the first time Bayesian deep networks for single-view depth estimation in colonoscopies. Our specific contribution is two-fold: 1) an exhaustive analysis of scalable Bayesian networks for depth learning in different datasets, highlighting challenges and conclusions regarding synthetic-to-real domain changes and supervised vs. self-supervised methods; and 2) a novel teacher-student approach to deep depth learning that takes into account the teacher uncertainty.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.