Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Understanding Memorization from the Perspective of Optimization via Efficient Influence Estimation (2112.08798v1)

Published 16 Dec 2021 in cs.LG

Abstract: Over-parameterized deep neural networks are able to achieve excellent training accuracy while maintaining a small generalization error. It has also been found that they are able to fit arbitrary labels, and this behaviour is referred to as the phenomenon of memorization. In this work, we study the phenomenon of memorization with turn-over dropout, an efficient method to estimate influence and memorization, for data with true labels (real data) and data with random labels (random data). Our main findings are: (i) For both real data and random data, the optimization of easy examples (e.g., real data) and difficult examples (e.g., random data) are conducted by the network simultaneously, with easy ones at a higher speed; (ii) For real data, a correct difficult example in the training dataset is more informative than an easy one. By showing the existence of memorization on random data and real data, we highlight the consistency between them regarding optimization and we emphasize the implication of memorization during optimization.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.