Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Isometric MT: Neural Machine Translation for Automatic Dubbing (2112.08682v3)

Published 16 Dec 2021 in cs.CL and cs.LG

Abstract: Automatic dubbing (AD) is among the machine translation (MT) use cases where translations should match a given length to allow for synchronicity between source and target speech. For neural MT, generating translations of length close to the source length (e.g. within +-10% in character count), while preserving quality is a challenging task. Controlling MT output length comes at a cost to translation quality, which is usually mitigated with a two step approach of generating N-best hypotheses and then re-ranking based on length and quality. This work introduces a self-learning approach that allows a transformer model to directly learn to generate outputs that closely match the source length, in short Isometric MT. In particular, our approach does not require to generate multiple hypotheses nor any auxiliary ranking function. We report results on four language pairs (English - French, Italian, German, Spanish) with a publicly available benchmark. Automatic and manual evaluations show that our method for Isometric MT outperforms more complex approaches proposed in the literature.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.