Papers
Topics
Authors
Recent
2000 character limit reached

Road-aware Monocular Structure from Motion and Homography Estimation (2112.08635v1)

Published 16 Dec 2021 in cs.CV

Abstract: Structure from motion (SFM) and ground plane homography estimation are critical to autonomous driving and other robotics applications. Recently, much progress has been made in using deep neural networks for SFM and homography estimation respectively. However, directly applying existing methods for ground plane homography estimation may fail because the road is often a small part of the scene. Besides, the performances of deep SFM approaches are still inferior to traditional methods. In this paper, we propose a method that learns to solve both problems in an end-to-end manner, improving performance on both. The proposed networks consist of a Depth-CNN, a Pose-CNN and a Ground-CNN. The Depth-CNN and Pose-CNN estimate dense depth map and ego-motion respectively, solving SFM, while the Pose-CNN and Ground-CNN followed by a homography layer solve the ground plane estimation problem. By enforcing coherency between SFM and homography estimation results, the whole network can be trained end to end using photometric loss and homography loss without any groundtruth except the road segmentation provided by an off-the-shelf segmenter. Comprehensive experiments are conducted on KITTI benchmark to demonstrate promising results compared with various state-of-the-art approaches.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.