Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Mathematical Runtime Analysis for the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) (2112.08581v7)

Published 16 Dec 2021 in cs.NE and cs.AI

Abstract: The non-dominated sorting genetic algorithm II (NSGA-II) is the most intensively used multi-objective evolutionary algorithm (MOEA) in real-world applications. However, in contrast to several simple MOEAs analyzed also via mathematical means, no such study exists for the NSGA-II so far. In this work, we show that mathematical runtime analyses are feasible also for the NSGA-II. As particular results, we prove that with a population size four times larger than the size of the Pareto front, the NSGA-II with two classic mutation operators and four different ways to select the parents satisfies the same asymptotic runtime guarantees as the SEMO and GSEMO algorithms on the basic OneMinMax and LeadingOnesTrailingZeros benchmarks. However, if the population size is only equal to the size of the Pareto front, then the NSGA-II cannot efficiently compute the full Pareto front: for an exponential number of iterations, the population will always miss a constant fraction of the Pareto front. Our experiments confirm the above findings.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.