Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

UMAD: Universal Model Adaptation under Domain and Category Shift (2112.08553v1)

Published 16 Dec 2021 in cs.CV and cs.LG

Abstract: Learning to reject unknown samples (not present in the source classes) in the target domain is fairly important for unsupervised domain adaptation (UDA). There exist two typical UDA scenarios, i.e., open-set, and open-partial-set, and the latter assumes that not all source classes appear in the target domain. However, most prior methods are designed for one UDA scenario and always perform badly on the other UDA scenario. Moreover, they also require the labeled source data during adaptation, limiting their usability in data privacy-sensitive applications. To address these issues, this paper proposes a Universal Model ADaptation (UMAD) framework which handles both UDA scenarios without access to the source data nor prior knowledge about the category shift between domains. Specifically, we aim to learn a source model with an elegantly designed two-head classifier and provide it to the target domain. During adaptation, we develop an informative consistency score to help distinguish unknown samples from known samples. To achieve bilateral adaptation in the target domain, we further maximize localized mutual information to align known samples with the source classifier and employ an entropic loss to push unknown samples far away from the source classification boundary, respectively. Experiments on open-set and open-partial-set UDA scenarios demonstrate that UMAD, as a unified approach without access to source data, exhibits comparable, if not superior, performance to state-of-the-art data-dependent methods.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube